

FORESEE® NCEPNA6M4-xxxx For Specification

Document title

eMCP eMMC(x8) Flash/ (x32) LPDDR3

Revision History

Revision No.	History	Draft Date	Remark
A0	Initial Draft	Jul 2017	Draft

ent.

FEATURES

[eMCP]

- Operation Temperature
- (-25)°C ~ 70°C Package
- 221-ball FBGA 11.5x13.0mm², 1.0t, 0.5mm pitch

[eMMC]

• eMMC5.0 compatible (Backward compatible to eMMC4.5)

• Bus mode

- Data bus width : 1-bit, 4-bit, 8-bit
- confidential Longsys - Data transfer rate: up to 200MB/s (HS200)
- MMC I/F Clock frequency : 0~200MHz
- Operating voltage range
 - Vcc (NAND) : 2.7 3.6V Vccq (Controller) : 1.7 1.95V / 2.7 3.6V
- Temperature - Operation (-25°C ~ +70°C)
- Storage without operation (-40[°]C ~ +85[°]C)

• Others

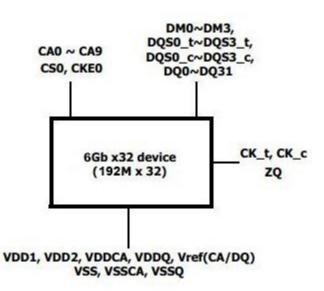
- This product is compliance with the RoHS

• Supported features

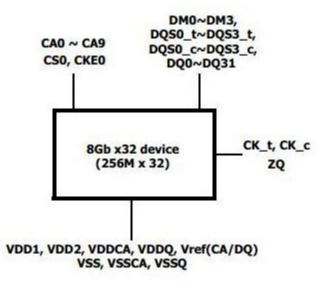
- HS200
- HPI, BKOPS
- Packed CMD, Cache
- Partitioning, RPMB
- Discard, Trim, Erase, Sanitize
- Write protect, Lock / Unlock
- PON, Sleep / Awake
- Reliable write
- Boot feature, Boot partition
- HW / SW Reset
- Field firmware update
- Configurable driver strength
- Health(SMART) report - Production state awareness
- Secure removal type
- FORCH

[LPDDR3]

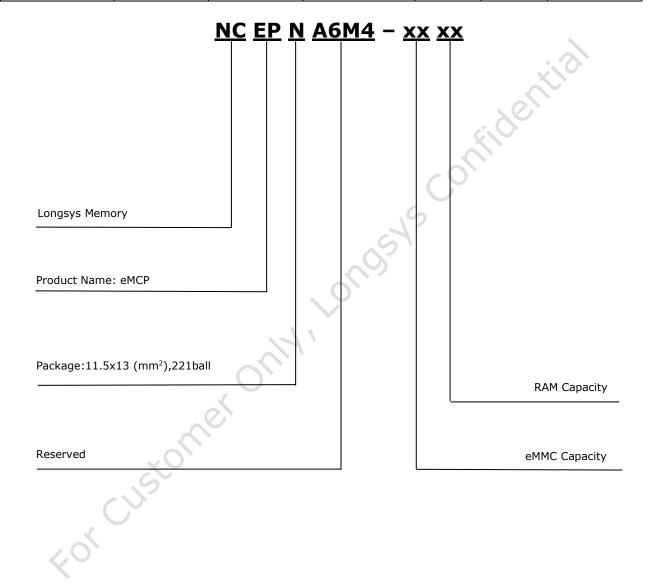
- VDD1 = 1.8V (1.7V to 1.95V)
- VDD2, VDDCA and VDDQ = 1.2V (1.14V to 1.30)
- HSUL_12 interface (High Speed Unterminated Logic 1.2V)
- Double data rate architecture for command, address and data bus
- all control and address except CS_n, CKE latched at both rising and falling edge of the clock
- CS n, CKE latched at rising edge of the clock
- two data accesses per clock cycle
- Differential clock inputs (CK_t, CK_c)
- Bi-directional differential data strobe (DQS t, DQS c)
- entites control of the control of th - Source synchronous data transaction aligned to bi-directional differential data strobe (DQS_t, DQS_c)



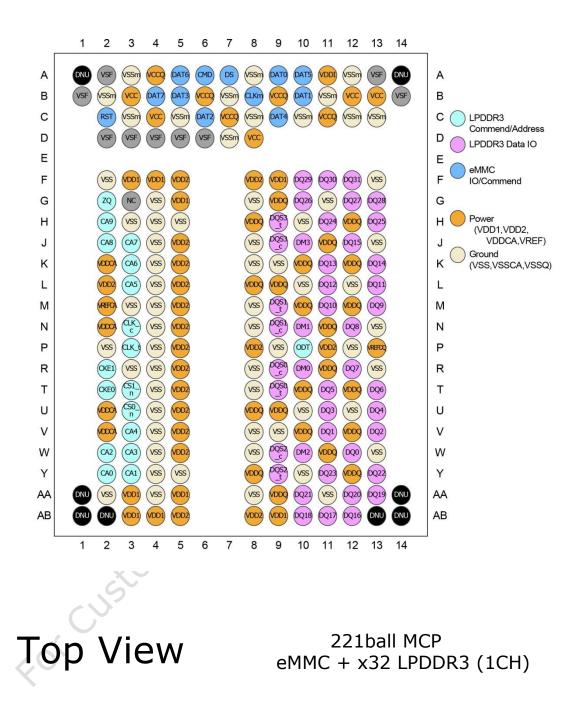
Functional Block Diagram


eMMC Block Diagram

DRAM Block Diagram


Note

1. Total current consumption is dependent to user operating conditions. AC and DC Characteristics shown in this specification are based on a single die. See the section of "DC Parameters and Operating Conditions"


ORDERING INFORMATION

Part Number	Package Size(mm)	Memory Combination	Operation Voltaye	Density	Speed	Package
		eMMC	3.3V/1.8V	8GB(x8)	200MHz	221ball FBGA
NCEPNA6M4-0804	11.5x13x1.0	LPDDR3	1.8V/1.2/1.2/1.2	4Gb(x32)	1333Mbp s	(Lead & Halogen Free)
		eMMC	3.3V/1.8V	8GB(x8)	200MHz	221ball FBGA
NCEPNA6M4-0808	11.5x13x1.0	LPDDR3	1.8V/1.2/1.2/1.2	8Gb(x32)	1333Mbp s	(Lead & Halogen Free)

Ball ASSIGNMENT

Note:

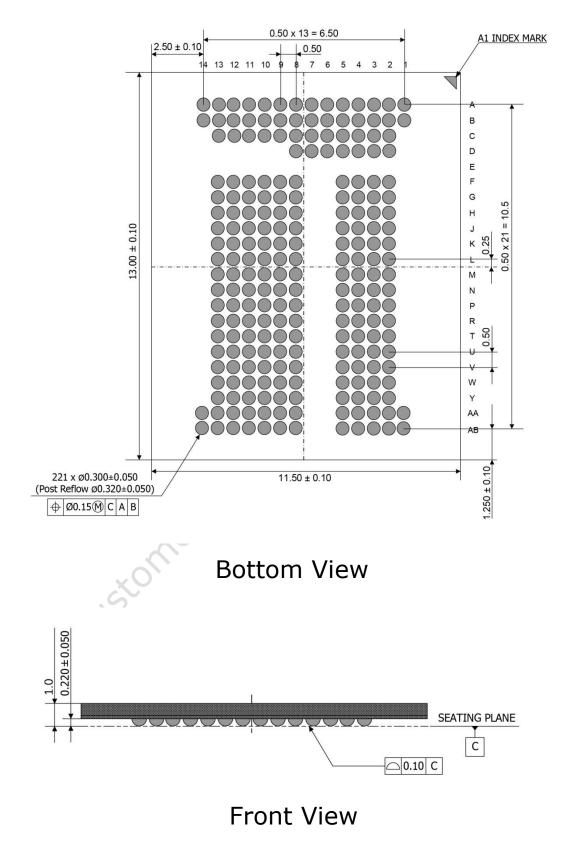
1. Vendor specific function (VSF) - this terminal should not have any external electrical connections, but it may have an internal connection. The terminal may be routed to provide access ability and may be used for general purpose vendor specific operations.

Pin Description

Symbol	Description	Туре
-	•	<i>.</i>

<eMMC(x8,MMC)>

CLK	Clock	Input
CMD	Command	Input/Output
DAT0~DAT7	Data Input/Output	Input/Output
VCC	Core Power Supply	Power
VCCQ	I/O Power Supply	Power
VSS	Ground	Ground
VDDI	By pass	Power
RST	Reset signal pin	Input
DS	Data strobe	Input


<LPDDR3(x32,2CS)>

<lpddr3(x32,2cs)></lpddr3(x32,2cs)>		- ON
CS0_n,CS1_n	Chip Select	Input
CK_c,CK_t	Differential Clocks) Input
CKE_0,CKE_1	Clock Enable	Input
CA0~CA9	Command / Address	Input
DQ0~DQ31	Data I/O	Input/Output
DM0~DM1	Input Data Mask	Input/Output
DQS0_t ~ DQS1_t	Differential Data Strobe (pos.)	Input/Output
DQS0_c ~ DQS1_c	Differential Data Strobe (pos.)	Input/Output
ZQ	Drive Strength Calibration	Input/Output
VDD1	Core Power Supply	Power
VDD2	Core Power Supply	Power
VSS	Ground	Ground
VDDQ	I/O Power Supply	Power
VDDCA	CA Power Supply	Power
VSSCA	CA Ground	Ground
VSSQ	I/O Ground	Ground
VREF(CA)/VRER(DQ)	Reference Voltage	Power

Package Information

221 Ball 0.5mm pitch 11.5mm x 13.0mm FBGA [t = 1.0 mm max]

emme Flash Longer Customer

1.1 General description

FORESEE eMMC is an embedded storage solution designed in the BGA package. The FORESEE eMMC consists of NAND flash and eMMC controller. The controller could manage the interface protocols, wear-leveling, bad block manage and ECC. FORESEE eMMC has high performance at a competitive cost, high quality and low power consumption, and eMMC is compatible with JEDEC standard eMMC5.0 specification.

For customer on the total of total of the total of total

www.longsys.com

2. eMMC Characteristics

2.1 Performance

		(MB/s)	
8GB	Up to 130	Up to 35	 Option: Cache / Packed / HS200 Test tool: uBOOT (Without O/S) Chunk size : 1MB, Test area : 100MB

[Table 1]

2.2 Power

2.1.1 Active power consumption during operation

Der		Max RMS current		
Der	isity	Icc	Iccq	
8GB	Operation	60mA	100mA	
Room temperature : 25°				

RMS current consumption is over a period of 100ms Vcc : 3.3V & Vccq : 1.8V HS200 enabled

2.1.2 Low power mode (Standby)

Density	Icc	Iccq		
8GB	50uA	100uA		
In Standby Power mode, CTPL Veca & NAND Vec newer supply is switched on				

In Standby Power mode, CTRL Vccq & NAND Vcc power supply is switched on No data transaction period before entering sleep status Room temperature : 25°

2.1.3 Low power mode (Sleep)

Density	Icc	Iccq
8GB	0	100uA

In sleep state, triggered by CMD5, NAND Vcc power supply is switched off (CTRL Vccq on) Room temperature : 25°C

3. eMMC New features for eMMC5.0

3.1 HS200 mode

eMMC supports HS200 signaling to achieve a bus speed of 200MB/s via a 200MHz SDR clock frequency. HS200 mode supports only 8-bit bus width and the 1.8V Vccq. Due to the speed, the host may need to have an adjustable sampling point to reliably receive the incoming data (Read Data and CRC Response) with DS pin. eMMC supports up to 5 Driver Strength.

Drive Type Values	Support	Nominal Impedance	Approximately driving capability compare to type_0	Remark
0	Mandatory	50 Ω	x 1	Default Drive Type。 Supports up to 200MHz operation。
1		33 Ω	x 1.5	Supports up to 200MHz operation.
2		66 Ω	x 0.75	The weakest driver that supports up to 200MHz operation.
3	Optional	100 Ω	x 0.5	For low noise and low EMI systems. Maximal operating frequency is decided by host design.
4		40 Ω	x 1.2	

[Table 2]I/O Driver strength types

Selecting **HS_Timing** depends on Host I/F speed, default is 0, but all of value can be selected by host.

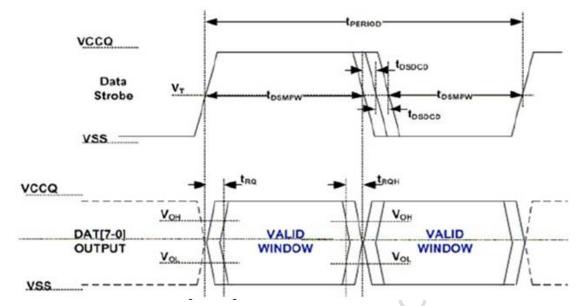
Value	Timing	Supportability for eMMC
0x00	Select backward compatibility interface timing	Support
0x01	High speed	Support
0x02	HS200	Support
0x03	Н\$400	Not support
FORCUS	[Table 3]HS_Timing values	

[Table 3]HS_Timing values

3.1.1 Bus timing specification in HS200 mode

HS200 Device input timing

[Figure 1]HS200 Device input timing


Parameter	Symbol	Min	Max	Unit	Remark
Output CLK					
Cycle time data		5		3	200MHz (Max) , between rising edges
transfer mode	t _{PERIOD}	Э	. C		with respect to V_{T}
Slew rate	SR	1.125		V/ns	With respect to $V_{\text{IH}}/V_{\text{IL}}$
			1		Allowable deviation from the input CLK
Duty cycle	t	0.0	0 0.3	ns	duty cycle distortion (t_{CKDCD})
distortion		115	With respect to V_{T}		
			Includes jitter, phase noise		
Minimum pulse	t _{DSMPW}	2.2		20	With respect to V-
width	LDSMPW	2.2		ns	With respect to V_T
	×O`	Output D	AT(referenced t	o data st	robe)
Input set-up time	S	0.4		nc	C _{DEVICE} ≪6pF
input set-up time	t _{ISUddr}	0.4		ns	With respect to $V_{\text{IH}}/V_{\text{IL}}$
Output hold skew	taau	0.4	0.4	nc	C _{DEVICE} ≤6pF
	t _{RQH}	0.4	0.4	ns	With respect to $V_{\text{IH}}/V_{\text{IL}}$
Slew rate	SR	1.125		V/ns	With respect to $V_{\text{IH}}/V_{\text{IL}}$

[Table 4]HS200 Device input timing

HS200 Device output timing

Data strobe is for reading data in HS200 mode. Data strobe is toggled only during data read or CRC status response.

[Figure 2]HS200 Device output timing

Parameter	Symbol	Min	Max	Unit	Remark
Data strobe				5	
Cycle time data			•	0	200MHz (Max), between rising
transfer mode	t _{PERIOD}	5	~		edges with respect to V_T
Slew rate	SR	1.125		V/ns	With respect to VIH/VIL and HS200 reference load
Duty cycle distortion	tdsdcd	0.0	0.2	ns	Allowable deviation from the input CLK duty cycle distortion (t_{CKDCD}) With respect to V _T Includes jitter, phase noise
Minimum pulse width	t _{DSMPW}	2.0		ns	With respect to V_{T}
Read pre-amble	t _{RPRE}	0.4	5 (one clock cycle)	ns	
Read post-amble	t _{RPST}	0.4	2.5 (half clock cycle)	ns	
		Output DAT	(referenced to d	data strobe))
Input set-up time	tısuddr			ns	$C_{DEVICE} {\leqslant} 6pF$ With respect to V_{IH}/V_{IL}
Output skew	t _{RQ}		0.4	ns	With respect to V _{OH} /V _{OL} and HS200 reference load
Output hold skew	t _{RQH}		0.4	ns	With respect to V _{OH} /V _{OL} and HS200 reference load
Slew rate	SR	1.125		V/ns	With respect to V_{OH}/V_{OL} and HS200 reference load

[Table 5]HS200 Device output timing

Parameter	Symbol	Min	Туре	Max	Unit	Remark
Pull-up resistance for CMD	RCMD	4.7		100	Kohm	
Pull-up resistance for DAT0-7	RDAT	10		100	Kohm	
Pull-down resistance for Data strobe	RDS	10		100	Kohm	
Internal pull up resistance DAT1-DAT7	Rint	10		150	Kohm	
Bus signal line capacitance	CL			13	pF	. 7
Single Device capacitance	CDevice			6	pF	
	ctorr	eror		onos	SCO	
For						

3.2 Field firmware update (FFU)

To download a new firmware, the controller requires instruction sequence following JEDEC standard. Longsys eMMC only supports Manual mode (MODE_OPERATION_CODES is not supported). For more details, refer to the App note.

eMMC Field F/W update flow	/ - CMD sequence
----------------------------	------------------

Cat black law ath E12B	CMD	Remark
Set block length 512B	CMD16, arg : 0x00000200	
Enter FFU mode	CMD6, arg : 0x031E0100	
Send FW to		Sending CMD25 is followed by sending
device(Download)	CMD25, arg : 0x00000000	FW data ,The whole data should be sent by one CMD25
CMD12 : Stop	CMD12, arg : 0x00000000	
CMD6 : Exit FFU mode	CMD6, arg : 0x031E0000	
HW Reset/Power cycle		CMD0 Reset is not support
Re-Init to trans state	CMD0, CMD1	
Check if FFU is succeeded	CMD8, arg : 0x00000000	Check EXT_CSD[26] : FFU_SUCCESS If FFU_SUCCESS is 0, FFU is succeeded, otherwise FFU is failed. Do not verify data with CMD17/CMD18 while FFU mode.
FOR	ally'	

tia

SUPPORTED_MODE[493] (Read Only)

BIT[0] : '0' FFU is not supported by the device.

- '1' FFU is supported by the device.
- BIT[1] : '0' Vendor specific mode (VSM) is not supported by the device.
 - '1' Vendor specific mode is supported by the device.

Bit	Field	Supportability
Bit[7:2]	Reserved	-
Bit[1]	VSM	Not support
Bit[0]	FFU	Support

FFU_FEATURE[492] (Read Only)

BIT[0]: '0' Device does not support MODE_OPERATION_CODES field (Manual mode)

'1' Device supports MODE_OPERATION_CODES field (Auto mode)

Bit	Field	Supportability
Bit[7:1]	Reserved	<u> </u>
Bit[0]	SUPPORTED_MODE_OPERATION_CODES	Not support
For	Longsys	
< ⁰ .		

FFU_ARG[490-487] (Read Only)

Using this field the device reports to the host which value the host should set as an argument for read and write commands in FFU mode.

FW_CONFIG[169] (R/W)

BIT[0] : Update disable

0x0 : FW updates enabled.

0x1 : FW update disabled permanently

Bit	Field	Supportability
Bit[7:1]	Reserved	-
Bit[0]	Update disable	FW updates enabled (0x0)

FFU_STATUS[26] (R/W/E_P)

Using this field the device reports to the host the state of FFU process

Value	Description
0x13 ~ 0xFF	Reserved
0x12	Error in downloading Firmware
0×11	Firmware install error
0×10	General error
0x01 ~ 0x0F	Reserved
0x00	Success

OPERATION_CODES_TIMEOUT[491](Read Only)

Maximum timeout for the SWITCH command when setting a value to the MODE_OPERATION_CODES field.The register is set to '0', because the controller doesn't support MODE_OPERATION_CODES.

Value	Description	Timeout value
0x01 0x17	MODE_OPERATION_CODES_TIMEOUT = 100us x	(Not defined)
0x01 ~ 0x17	20PERATION_CODES_TIMEOUT	(Not defined)
0x18 ~ 0xFF	Reserved	-

MODE_OPERATION_CODES[29] (W/E_P)

The host sets the operation to be performed at the selected mode, in case MODE_CONFIGS is set to FFU_MODE,MODE_OPERATION_CODES could have the following values :

Value	Description
0×01	FFU_INSTALL
0x02	FFU_ABORT
0x00, others	Reserved

3.3 Health(Smart) report

Using this feature is for monitoring device status and preventing the error and failure in advance. Host can check device information with EXT_CSD as the register table given below.

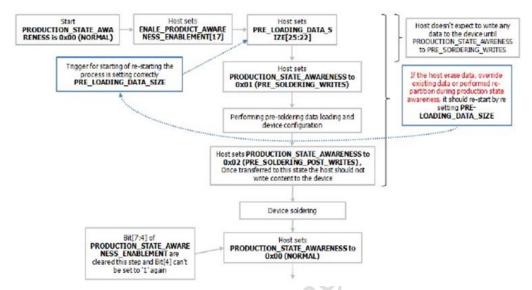
Field	CSD slice	Description
VENDOR_PROPRIETARY_ HEALTH_REPORT	[301:270]	Reserved for vendor proprietary health report. [301:286] Number of factory bad blocks for 4CE (4bytes for each CE) [285:270] Number of runtime bad blocks for 4CE (4bytes for each CE)
DEVICE_LIFE_TIME_EST _TYPE_ A / B	[268:269]	Current average P/E cycle of memory of Type A(SLC) / Type B(MLC) relative to its maximum estimated capability
PRE_EOL_INFO	[267]	Consumed reserved blocks to notify before reaching the EOL (End of life) status
OPTIMAL_TRIM/WRITE_ READ_SIZE	[264:266]	Minimum optimal (for the device) Erase / Write / Read unit size for the different partitions
DEVICE_VERSION	[263:262]	Device version
FIRMWARE_VERSION	[261:254]	Device FW version

[Table 7]Using EXT_CSD for health report (Read only)

VENDOR_PROPRIETARY_HEALTH_REPORT Example

0X00h factory bad blocks in CE0

0x25h factory bad blocks in CE3


0x07h runtime bad blocks in each CE(CE0 ~ CE3)

For customer

3.4 Production state awareness

This new feature is added for eMMC5.0 JEDEC Spec. to prevent the data break during device soldering. For this feature implementation, eMMC supports only manual mode and PRODUCT_STATE_AWARENESS_TIMEOUT is 0x17(maximum). For more detail, see as the flow chart and register table given below.

[Figure 3]Production State Awareness manual mode flowchart

PRODUCTION_STATE_AWARENESS_TIMEOUT[218] (Read Only)

This field indicates maximum timeout for the SWITCH command when setting a value to the PRODUCTION_STATE_AWARENESS[133]field

Value	Description	Timeout value
0x00 ~ 0x17	Production State Timeout = 100us x 2 ^{PRODUCTION_STATE_AWARENESS_TIMEOUT}	0x17 (838.86s)
0x18 ~ 0xFF	Reserved	
ForC		

PRODUCTION_STATE_AWARENESS[133](R/W/E) oMMC doosn't support 0x03 state

Value	Device State	Description
0x00	NORMAL (Field)	Regular operation
0x01	PRE_SOLDERING_WRITES	
0x02	PRE_SOLDERING_POST_WRITES	Once transferred to this state the host should not write content to the device
0x03	AUTO_PRE_SOLDERING	Not supported
0x04 ~ 0x0F	Reserved	
0x10 ~ 0x1F	Reserved for Vendor Proprietary Usage	

PRODUCTION_STATE_AWARENESS_ENABLEMENT[17]

Reserved mode State Reserved mode	
Reserved mode State Awareness enable Reserved Auto mode Supported S Cleared when PRODUCTION_STATE_AWARENESS is charged to Normal (either automatically or by setting PRODUCTION_STATE_AWARENESS to Normal) This bit could I '1' only o	mode upporte be set t
is charged to Normal (either automatically or by setting PRODUCTION_STATE_AWARENESS to Normal)	
ustomer only longs	
ustomer only !	
ustomerom	
ustomer	
CUS ^{KO}	
$\langle O \rangle$	

3.5 Sleep notification

Host may use to a power off notification when it intends to turn-off Vcc after moving the device to sleep state. Some

features are added to clarify the spec for entering sleep mode when power off notification is enabled.

■ Add the SLEEP_NOTIFICATION on the interruptible Command List

CM	1D	Description	Is interruptible?
СМ	ID6	SWITCH, Byte POWER_OFF_NOTIFICATION, Value POWER_OFF_LONG or SLEEP_NOTIFICATION	Yes

SLEEP_NOTIFICATION_TIME[216](Read Only)

Maximum timeout for the SWITCH command when notifying the device that it is about to move to sleep state by writing

SLEEP_NOTIFICATION to POWER_OFF_NOTIFICATION[34]byte. (unit : 10us)

Value	Description	Timeout value
0x01 ~ 0x17	Sleep Notification Timeout = 10us x 2 SLEEP_NOTIFICATION_TIME	0xC (40.96ms)
0x18 ~ 0xFF	\mathcal{O}	

 $\boldsymbol{\varsigma}$

POWER_OFF_NOTIFICATION[34] (R/W/E_P)

Add Ox04h for the SLEEP_NOTIFICATION as a valid value

Value	Field	Description
:	:	
0x03	POWER_OFF_LONG	Host is going to power off the device. The device shall respond within POWER_OFF_LONG_TIME
0x04	SLEEP_NOTIFICATION	Host is going to put device in sleep mode. The device shall respond within SLEEP_NOTIFICATION_TIME
For	ustomer	

www.longsys.com

3.6 Secure removal type

This feature is used for how information is removed from the physical memory during a purge operation.

Secure Removal Type[16]

Among four options for secure removal type, eMMC supports 0x3, 0x1 and 0x0 (0x2 option is not supported)

eMMC recommends using a vendor defined removal type(type 3). If host want to erase the device physically using

removal type0.

Secure erase & Secure trim time is longer than using removal type0

BIT	Description of Secure Removal Type		Description	Supportability
		0x3	Information removed using a vendor defined	Support
	Configure Socies Domoval	0x2	Information removed by an overwriting the addressed locations with a character, its complement, then a random character	CHIDENE
BIT[5:4]	Configure Secure Removal Type (R/W)	0x1	Information removed by an overwriting the addressed locations with a character followed by an erase	
		0x0	Information removed by an erase of the physical memory	
		BIT[3]	Information removed using a vendor defined	Support
	0	BIT[2]	Information removed by an overwriting the addressed locations with a character, its complement, then a random character	Not support
BIT[3:0]	Supported Secure Removal Type (R)	BIT[1]	Information removed by an overwriting the addressed locations with a character followed by an erase	Support
~	3	BIT[0]	Information removed by an erase of the physical memory	Support
6 0				

3.7 RPMB throughput improvement (For future spec in eMMC)

This feature is proposed for RPMB write data size to improve the RPMB throughput at eMMC5.x spec. The supported maximum data size of RPMB write access is 8KB (32ea). At this moment for eMMC device, supported Max.data size is up to 64ea(16KB). More information is shown as the following tables.

RPMB Throughput

FORESEE eMMC provides up to 64ea for RPMB write data size.

	Max. data size	Using for improve RPMB Throughput
eMMC5.x Spec.	32ea (<=8KB)	Setting the EN_RPMB_REL_WR (Bit[4] of EXT_CSD)[166]) Value
Farran AMAG	Available Max. data size is 64ea (<=16KB)	REL_WR_SEC_C[222] value is set to `10'
Foresee eMMC	Present setting RPMB write data size is 8KB	(512B chunk based, 8KB)

RPMB Performance with eMMC

Following table shows the RPMB performance with 8KB chunk data on the eMMC device.

RPMB	512B Data	1KB Data	2KB Data	4KB Data	8KB Data
Performance	transfer unit				
Sequential Write (Unite : MB/s)	0.6	1	2	3	5
Sequential Read (Unite : MB/s)	4	7	11	15	20
Forci	stomer	onivi	0		

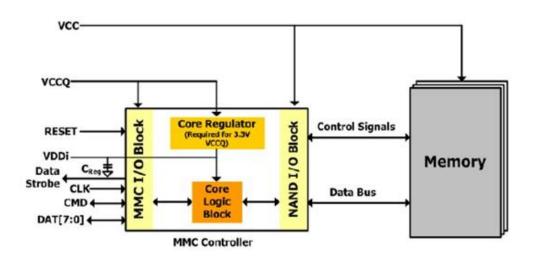
3.8 Enhanced features from eMMC4.5

Several eMMC features are changed from eMMC4.5 to enhance the eMMC performance.

HPI Features		eMMC5.0	Description
	CMD12	CMD13	Following industry wise common configuration.
Max. Packed CMD size (Read/Write)	8ea	63ea	Expended the packed CMD size for optimized device performance.
Cache size	64KB	128KB	Cache size is up to 128KB for optimized device performance with 4-way interleave implementation.
I/O Driver strength	Support Type0	Support all type	eMMC supports all of driver strength types for eMMC5.0
			sys confide.

4. eMMC general parameters

4.1 Power mode


4.1.1 Leakage

Parameter		Symbol	Min	Max	Unit	Remark
	BGA		-0.5	V _{ccq} +0.5	V	
		All inj	outs			
Input leakage current (before initialization sequenceand/or the internal- pull up resistors connected)			-100	100	uA	
Input leakage current (after initialization sequence and the internal pull up resistors disconnected)			-2	2	uA	tia
		All out	puts		20	
Output leakage current (before initialization sequence)			-100	100	uA	
Output leakage current (after initialization sequence)			-2	2	uA	

[Table 9]General operation conditions

4.1.2 Power Supply

In eMMC, Vcc is used for the NAND core voltage and NAND interface; Vccq is for the controller core and Emmc interface voltage shown in Figure 9. The core regulator is optional and only required when internal core logic voltage is regulated from Vccq. A Creg capacitor must be connected to the VDDi terminal to stabilize regulator output on the system.

[Figure 4]eMMC internal power diagram

eMMC supports one or more combinations of V cc and V ccq as shown in Table 15. The available voltage configuration is shown in Table 16.

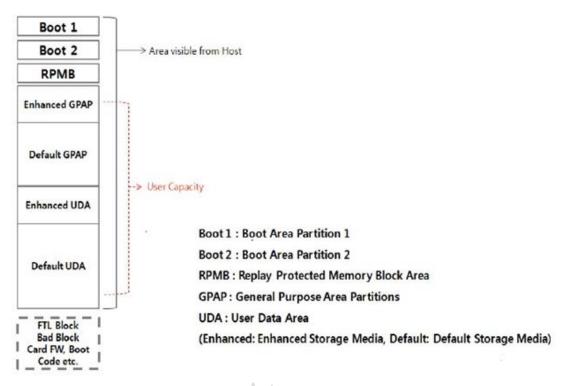
Parameter	Symbol	Min	Max	Unit	Remark
Supply voltage	Vec	2.7	3.6	V	
(NAND)	Vcc	1.7	1.95	V	Not support
Supply voltage	Veca	2.7	3.6	V	
(I/O)	Vccq	1.7	1.95	V	
Supply power-up for 3.3V	tpruh		35	ms	
Supply power-up for 1.8V	tprul		25	ms	

[Table 10]eMMC power supply voltage

1.7V~1.95V 2.7V~3.6V Vcc 2.7V-3.6V Valid I.7V-1.95V Not Valid Not Valid I[Table 11]eMMC voltage combinations			V _{ccq}		
V _{cc} 1.7V–1.95V Not Valid Not Valid [Table 11]eMMC voltage combinations			1.7V ~ 1.95V	2.7V ~ 3.6V	
1.7V-1.95V Not Valid Not Valid [Table 11]eMMC voltage combinations	V	2.7V-3.6V	Valid	Valid	
ongsys	Vcc	1.7V-1.95V	Not Valid	Not Valid	

4.2 Connection Guide

Parameter	Symbol	Min	Max	Recommend	Unit	Remark
Pull-up resistance for CMD	R_CMD	4.7	100	10	kohm	Pull-up resistance should be put on CMD line to prevent bus floating.
Pull-up resistance for DAT0~7	R_DAT	10	199	50	kohm	Pull-up resistance should be put on DAT line to prevent bus floating.
Data strobe(DS)	R_DS	NC	NC	NC		It is not necessary to put pull-up/pull-down resistance on DS line since DS is internally pulled down. Direct connection to host is required and please float this pin if it is not used
Pull-up resistance for RSTn	R_RSTn	10	100	50	kohm	It is not necessary to put pull-up resistance on RSTn line if host does not use H/W reset. (Extended CSD register [162] = 0b)
Serial resistance on CLK	R_CLK	0	30	27	ohm	To reduce overshooting/undershooting Note: If the host uses HS200, we recommend to remove this resister for better CLK signal
Vccq capacitor value	C1 & C2	2±0.22	4.7	2.2±0.22	uF	Coupling cap should be connected with Vccq and Vssqm as closely possible.
Vcc capacitor value(≤8GB)				S	Y	Coupling cap should be connected with Vcc and Vssm as closely possible.
VCC capacitor value(>8GB)	C3 & C4	4.72±10%	10	4.7±10%	uF	Vcc /Vccq cap. value would be up to Host requirement and the application system characteristics.
VDDi capacitor value	C5 & C6	0	2.2	0.1	uF	Coupling cap should be connected with VDDi and Vssq as closely possible. (Internal Cap : 1uF)


[Table 12]Connection guide specification

5. eMMC basic operations

5. Partitioning

5.1 User density

[Figure 5]Partition diagram

Boot partition size		
	Density	Boot Partition 1,2
	8GB	4096KB
	~~~~	
× O		
CAR		
FOR		



5.2 Erase / Write protect group size

Write Block 0	Write Block 1	Write Block 2	Write Block 3	Write Block n			
Erase Group	0						
Erase Group	1						
Erase Group	2						
Erase Group 3							
Erase Group n							
Write Protect G	Group 0						
Vrite Protect Gr	roup 1						
Vrite Protect Gr	roup 2						
/rite Protect Gr	roup 3						

Density	Erase gro	Write protect group				
Density	ERASE_GROUP_DER=0	ERASE_GROUP_DER=1	size			
8GB	512KB	512KB	8MB			

[Table 13]Erase / Write protect Group size

For customer



### 6. Time out

Timing parameter	Value	Remark		
Read timeout	100ms			
Write timeout(CMD to write Done)	Max 500ms			
Erase timeout	Max 600ms	Erase group size : 512KB		
Force erase timeout	Max 3min			
Discard timeout	Max 600ms			
Trim timeout	Max 600ms			
Secure trim	Max 6s	Unmapping only		
Sanitize	8GB:8min	Foresee recommends to erase all blocks before sanitize operation to shorten the sanitize time		
Secure erase	Max 6s	Unmapping only		
Initialization timeout	Max 1s	CMD to Response		
1st Initialization timeout after partitioning	Max 1s	BOOT1/2, RPMB, UDA & EUDA		
PON busy Time (Short / Long)	Max 50ms/1000ms	PON long busy time includes garbage collection time.		
Initialization after PON (Short / Long)	Max 180ms			
BKOP exit Time	Max 100ms	BKOP off time after HPI		
Auto-BKOP exit Time	Max 100ms	BKOP off time after any CMD from host		
HPI	Max 100ms	Response after HPI		
CMD5 sleep In	3ms			

eMMC I/F : HS200

### [Table 14]Time out value

Pre-conditioning states - Clean state / Test Range : Random write - 1GB, Random read - 1GB Sequential read / write chunk size : 1MB Current numbers are based on aligned 4KB Maximum 4-way interleaving

For customer



### 7. Device registers

There are six different registers within the device interface:

•Operation conditions register (OCR)

•Card identification register (CID)

•Card specific data register (CSD) •Relative card address register (RCA)

•Relative card address register (I •DSR (Driver Stage Register)

•Extended card specific data register (EXT_CSD).

These registers are used for the serial data communication and can be accessed only using the corresponding commands.

eMMC has a status register to provide information about the current device state and completion codes for the last host command.

### 7.1 Operation conditions register (OCR)

The 32-bit operation conditions register (OCR) stores the VDD voltage profile of eMMC and the access mode indication. In addition, this register includes a status information bit. This status bit is set if eMMC power up procedure has been finished.

OCR bit	Description	Foresee eMMC	
[6:0]	Reserved	000 0000b	
[7]	1.70V - 1.95V	1b	
[14:8]	2.0 - 2.6	000 0000b	
[23:15]	2.7 - 3.6 (High $V_{ccq}$ range)	1111 1111 1b	
[28:24]	Reserved	000 000b	
[30:29]	Access mode 10b(sector mode		
[31]	(card power up status bit (busy)) ⁽¹⁾		

### [Table 15]OCR register definition

1) This bit is set to LOW if the card has not finished the power up routine

orcustomer



### 7.2 Card identification (CID) register

The card identification (CID) register is 128 bits wide. It contains eMMC identification information used during eMMC identification phase (eMMC protocol). Every individual eMMC has a unique identification number. The structure of the CID register is defined in the following sections.

Name	Field	Width	CID slice	CID value	Remark
Manufacturer ID	MID	8	[127:120]	88h	
Reserved		6	[119:114]		
Card/BGA	CBX	2	[113:112]	01h	BGA
OEM/application ID	OID	8	[111:104]	03h	
Product name	PNM	48	[103:56]	0x4E4361726420	
Product revision	PRV	8	[55:48]	02h	. ^
Product serial number	PSN	32	[47:16]		Not Fixed
Manufacturing date	MDT	8	[15:8]		Not Fixed
CRC7 checksum	CRC	7	[7:1]	c.C	Not Fixed
Not used, always '1'	Reserved	1	[0:0]	1	

[Table 16]Card identification (CID) fields

### 7.3 Card specific data register (CSD)

The card specific data (CSD) register provides information on how to access eMMC contents. The CSD defines the data format, error correction type, maximum data access time, data transfer speed and so on. The programmable part of the register (entries marked by W or E, see below) can be changed by CMD27. The type of the CSD Registry entries in the Table 20 below is coded as follows:

• R: Read only.

• W: One time programmable and not readable.

• R/W: One time programmable and readable.

.or custom

• W/E: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 reset and not readable.

R/W/E: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 reset and readable.
 R/W/C_P: Writable after value cleared by power failure and HW/rest assertion (the value not cleared by CMD0 reset)

and readable.

R/W/E_P: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0 reset and readable.
W/E_P: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0 reset and not

readable.



Name	Field	Width	Cell Type	CSD-slice
CSD structure	CSD_STRUCTURE	2	R	[127:126]
System specification version	SPEC_VERS	4	R	[125:122]
Reserved	-	2	R	[121:120]
Data read access-time 1	TAAC	8	R	[119:112]
Data read access-time 2 in CLK cycles (NSAC*100)	NSAC	8	R	[111:104]
Max. bus clock frequency	TRAN_SPEED	8	R	[103:96]
Card command classes	CCC	12	R	[95:84]
Max. read data block length	READ_BL_LEN	4	R	[83:80]
Partial blocks for read allowed	READ_BL_PARTIAL	1	R	[79:79]
Write block misalignment	WRITE_BLK_MISALIGN	1	R	[78:78]
Read block misalignment	READ_BLK_MISALIGN	1	R	[77:77]
DSR implemented	 DSR_IMP	1	R	[76:76]
Reserved	-	2	R	[75:74]
Device size	C_SIZE	12	R	[73:62]
Max. read current $@V_{DD}$ min	VDD_R_CURR_MIN	<b>S</b> 3	R	[61:59]
Max. read current @ $V_{_{DD}}$ max	VDD_R_CURR_MAX	3	R	[58:56]
Max. write current @ $V_{_{DD}}$ min	VDD_W_CURR_MIN	3	R	[55:53]
Max. write current @ $V_{_{DD}}$ max	VDD_W_CURR_MAX	3	R	[52:50]
Device size multiplier	C_SIZE_MULT	3	R	[49:47]
Erase group size	ERASE_GRP_SIZE	5	R	[46:42]
Erase group size multiplier	ERASE_GRP_MULT	5	R	[41:37]
Write protect group size	WP_GRP_SIZE	5	R	[36:32]
Write protect group enable	WP_GRP_MULT	1	R	[31:31]
Manufacturer default ECC	DEFAULT_ECC	2	R	[30:29]
Write speed factor	R2W_FACTOR	3	R	[28:26]
Max. write data block length	WRITE_BL_LEN	4	R	[25:22]
Partial blocks for write allowed	WRITE_BL_PARTIAL	1	R	[21:21]
Reserved	-	4	R	[20:17]
Content protection application	CONTENT_PROT_APP	1	R	[16:16]
File format group	FILE_FORMAT_GRP	1	R/W	[15:15]
Copy flag(OTP)	COPY	1	R/W	[14:14]
Permanent write protection	PERM_WRITE_PROTECT	1	R/W	[13:13]
Temporary write protection	TMP_WRITE_PROTECT	1	R/W/E	[12:12]
File format	FILE_FORMAT	2	R/W	[11:10]
ECC code	ECC	2	R/W/E	[9:8]
CRC	CRC	7	R/W/E	[7:1]
Not used, always '1'	-	1	-	[0:0]

[Table 17]CSD fields



#### 7.4 Extended CSD register

The Extended CSD register defines eMMC properties and selected modes. It is 512 bytes long. The most significant 320 bytes are the Properties segment, which defines eMMC capabilities and cannot be modified by the host. The lower 192 bytes are the modes segment, which defines the configuration eMMC is wo rking in. These modes can be changed by the host by means of the switch command.

Name	Field	Size	Туре	Slice [bytes]	Value	Description
Reserved		7		[511:505]	0h	
Supported Command Sets	S_CMD_SET	1	R	[504]	1h	
HPI Features	HPI_FEATURES	1	R	[503]	1h	HPI type CMD12
Background operations support	BKOPS_SUPPORT	1	R	[502]	1h	BKOPS supported
Max packed read command	MAX_PACKED_READS	1	R	[501]	3Fh	
Max packed write command	MAX_PACKED_WRITES	1	R	[500]	3Fh	
Data Tag Support	DATA_TAD_SUPPORT	1	R	[499]	1h	
Tag Unit Size	TAG_UNIT_SIZE	1	R	[498]	4h	
Tag Resource Size	TAG_RES_SIZE	1	R	[497]	0h	
Context management capabilities	CONTEXT_CAPABITILITIES	1	R	[496]	5h	
Large Unit size	LARGE_UNIT_SIZE_M1	1	R	[495]	7h	Large Unit size 8MB
Extended partitions attribute support	EXT_SUPPORT	1	R	[494]	3h	
Supported modes	SUPPORTED_MODES	1	R	[493]	3h	
Reserved		191		[492:302]	0h	
Vendor proprietary health report	VENDOR_PROPRIETARY_HEA LTH_REPORT	1	R	[301:27 0]	0h	
Device life time estimation type B	DEVICE_LIFE_TIME_EST_TYP _B	1	R	[269]	1h	
Device life time estimation type A	DEVICE_LIFE_TIME_EST_TYP _A	1	R	[268]	1h	
Pre EOL information	PRE_EOL_INFO	1	R	[267]	1h	
Optimal read size	OPTIMAL_READ_SIZE	1	R	[266]	0h	
Optimal write size	OPTIMAL_WRITE _SIZE	1	R	[265]	4h	
Optimal trim unit size	OPTIMAL_TRIM_UNIT_SIZE	1	R	[264]	1h	



Name	Field	Size	Туре	Slice [bytes]	Value	Description
Reserved		11		[263:253]	TBD	
Cache size	CACHE_SIZE	4	R	[252:24 9]	10000h	
Generic CMD6 timeout	GENERIC_CMD6_TIME	1	R	[248]	Ah	Generic CMD6 timeout 100ms
Power-off notification(long) timeout	POWER_OFF_LONG_TIME	1	R	[247]	3Ch	Power off notification(l ong) timeout 600ms
Background operations status	BKOPS_STATUS	1	R	[246]	0h	No operations required
Number of correctly programmed sectors	CORRECTLY_PRG_SECTORS_ NUM	4	R	[245:242]	0h	
First Initialization time after partitioning	INI_TIMEOUT_AP	1	R	[241]	1Eh	initial time out 3s
Reserved		1		[240]	0h	
Power class for 52Mhz,DDR at 3.6V	PWR_CL_DDR_52_360	1	R	[239]	0h	rms 100 mA, peak 200 mA
Power class for 52Mhz,DDR at 1.95V	PWR_CL_DDR_52_195	1	R	[238]	0h	rms 65 mA, peak 130 mA
Reserved		2		[237:236]	0h	
Minimum write performance for 8bit at 52MHz in DDR mode	MIN_PERF_DDR_W_8_52	1	R	[235]	0h	For cards not reaching the 4.8 MB/s value Only support SDR
Minimum read performance for 8bit at 52MHz in DDR mode	MIN_PERF_DDR_R_8_52	1	R	[234]	0h	For cards not reaching the 4.8MB/s value
Reserved		1		[233]	0h	
TRIM Multiplier	TRIM_MULT	1	R	[232]	5h	trim time out 1.5s



				Slice		
Name	Field	Size	Туре	[bytes]	Value	Description
Secure feature support	SEC_FEATURE_SUPPORT	1	R	[231]	55h	<ol> <li>Support the secure and insecure trim operations.</li> <li>Support the automatic secure purge operation on retired defective portions of the array.</li> <li>Secure purge operations are supported.</li> <li>Support the sanitize operation</li> </ol>
Secure Erase Multiplier	SEC_ERASE_MULT	1	R	[230]	1Bh	secure erase time out 81s
Secure TRIM Multiplier	SEC_TRIM_MULT	1	R	[229]	11h	secure trim time out 51s
Boot Information	BOOT_INFO	1	R	[228]	7h	<ol> <li>Support high speed timing boot.</li> <li>Support dual data rate during boot</li> <li>Support alternati ve boot method</li> </ol>
Reserved		1		[227]	0h	



Name	Field	Size	Туре	Slice [bytes]	Value	Description
Boot partition size	BOOT_SIZE_MULTI	1	R	[226]	20h	boot partition 4096KB
Access size	ACC_SIZE	1	R	[225]	6h	super page 16kB
High-capacity Erase unit size	HC_ERASE_GROUP_SIZE	1	R	[224]	1h	hc erase group size 512KB
High-capacity Erase time out	ERASE_TIMEOU_MULT	1	R	[223]	5h	hc erase time out 1.5s
Reliable write sector count	REL_WR_SEC_C	1	R	[222]	1h	1 sector
High-capacity write protect group size	HC_WP_GRP_SIZE	1	R	[221]	8h	hc wp group size 4096KB
Sleep current(VCC)	S_C_VCC	1	R	[220]	7h	128µA
Sleep current[VCCQ]	S_C_VCCQ	1	R	[219]	7h	128µA
Production state awareness timeout	PRODUCTION_STATE_AWA RENESS_TIMEOUT		R	[218]	17h	Production state awareness timeout 838.86s
Sleep/Awake time out	S_A_TIMEOUT	1	R	[217]	16h	Sleep/Awake timeout 419.43ms
Sleep Notification Time out	SLEEP_NOTIFICATION_TIM E	1	R	[216]	7h	Sleep Notification Time out 1.28ms
Sector count	SEC_COUNT	4	R	[215:212]	08G:E70800h	depend on density
Reserved		1		[211]	0h	
Minimum Write Performance for 8bit @52MHz	MIN_PERF_W_8_52	1	R	[210]	0h	
Minimum Read Performance for 8bit @52MHz	MIN_PERF_R_8_52	1	R	[209]	0h	
Minimum Write Performance for 4bit @52MHz or 8bit @26MHz	MIN_PERF_W_8_26_4_52	1	R	[208]	0h	



Name	Field	Size	Туре	Slice [bytes]	Value	Description
Minimum Read Performance for 4bit @52MHz or 8bit @26MHz	MIN_PERF_R_8_26_4_52	1	R	[207]	0h	
Minimum Write Performance for 4bit @26MHz	MIN_PERF_W_4_26	1	R	[206]	0h	
Minimum Read Performance for 4bit @26MHz	MIN_PERF_R_4_26	1	R	[205]	0h	0
Reserved		1		[204]	0h	
Power Class for 26MHz @3.6V	PWR_CL_26_360	1	R	[203]	0h	rms 100 mA, peak 200 mA
Power Class for 52MHz @3.6V	PWR_CL_52_360	1	R	[202]	0h	rms 100 mA, peak 200 mA
Power Class for 26MHz @1.95V	PWR_CL_26_195	1	R	[201]	0h	rms 65 mA, peak 130 mA
Power Class for 52MHz @1.95V	PWR_CL_52_195	1	R	[200]	0h	rms 65 mA, peak 130 mA
Partition switching timing	PARTITION_SWITCH_TIME	1	R	[199]	1h	Partition switch time out 10ms
Out-of-interrupt busy timing	OUT_OF_INTERRUPT_TIME	1	R	[198]	5h	HPI time out 50ms
I/O Driver Strength	DRIVER_STRENGTH	1	R	[197]	1h	
Card Type	CARD_TYPE	1	R	[196]	17h	HS200 SDR eMMC@200M hz-1.8V I/0
Reserved		1		[195]	0h	
CSD Structure Version	CSD_STRUCTURE	1	R	[194]	2h	CSD version No. 1.2
Reserved		1		[193]	0h	
Extended CSD Revision	EXT_CSD_REV	1	R	[192]	7h	Revision 1.7 (for MMC v5.0,v5.01)
Command Set	CMD_SET	1	R/W/ E_P	[191]	0h	
Reserved		1		[190]	0h	
Command set revision	CMD_SET_REV	1	R	[189]	0h	v4.0
Reserved		1		[188]	0h	



Name	Field	Size	Туре	Slice [bytes]	Value	Description
Power class	POWER_CLASS	1	R/W/ E_P	[187]	0h	
Reserved		1		[186]	0h	
High Speed Interface Timing	HS_TIMING	1	R/W/ E_P	[185]	1h	High Speed
Reserved		1		[184]	0h	
Bus Width Mode	BUS_WIDTH	1	W/E_ P	[183]	0h	
Reserved		1		[182]	0h	
Erased memory range	ERASE_MEM_CONT	1		[181]	0h	
Reserved		1		[180]	0h	
Partition Configuration	PARTITION_CONFIG	1	R/W/ E R/W/ E_P	[179]	Oh	
Boot config protection	BOOT_CONFIG_PROT	1	R/W R/W/ C_P	[178]	0h	
Boot bus width1	BOOT_BUS_WIDTH	1	R/W/ E	[177]	0h	
Reserved		1		[176]	0h	
High-density erase group definition	ERASE_GROUP_DEF	1	R/W/ E_P	[175]	0h	
Reserved		1		[174]	0h	
Boot area write protect register	BOOT_WP	1	R/W R/W/ C_P	[173]	0h	
Reserved		1		[172]	0h	
User area write protect register	USER_WP	1	R/W R/W/ C_P R/W/ E_P	[171]	0h	
Reserved		1		[170]	0h	
FW Configuration	FW_CONFIG	1	R/W	[169]	0h	
RPMB Size	RPMB_SIZE_MULT	1	R	[168]	20h	RPMB size is 4MB
Write reliability setting register	WR_REL_SET	1	R/W	[167]	0h	



Name	Field	Size	Туре	Slice [bytes]	Value	Description
Write reliability parameter register	WR_REL_PARAM	1	R	[166]	5h	Support the enhanced definition of reliable write
Reserved		1		[165]	0h	
Manually start background operations	BKOPS_START	1	W/E_ P	[164]	0h	
Enable background operations handshake	BKOPS_EN	1	R/W	[163]	0h	
H/W reset function	RST_n_FUNCTION	1	R/W	[162]	0h	
Reserved		1		[161]	0h	
Partitioning support	PARTITIONING_SUPPORT		R	[160]	7h	<ol> <li>Enhanced technological features in partitions and user data area.</li> <li>Device supports partitioning features</li> <li>Device can have extended partition attribute</li> </ol>
Max Enhanced Area Size	MAX_ENH_SIZE_MULT	3	R	[159:15 7]	100h	
Partitions attribute	PARTITIONS_ATTRIBUTE	1	R/W	[156]	0h	
General Purpose Partition Size	GP_SIZE_MULT	12	R/W	[154:14 3]	0h	
Enhanced User Data Area Size	ENH_SIZE_MULT	3	R/W	[142:14 0]	0h	
Enhanced User Data Start Address	ENH_START_ADDR	4	R/W	[139:13 6]	0h	
Reserved		1		[135]	0h	
Secure Bad Block Management Mode	SEC_BAD_BLK_MGMNT	1	R/W	[134]	0h	



Name	Field	Size	Туре	Slice [bytes]	Value	Description
Reserved		3		[133:13 1]	0h	
Program CID/CSD in DDR mode support	PROGRAM_CID_CSD_DDR_ SUPPORT	1	R	[130]	1h	
Reserved		112		[129:18]	0h	
Product state awareness enablement	PRODUCT_STATE_AWAREN ESS_ENABLEMENT	1	R/W/ E&R	[17]	1h	
Secure Removal Type	SECURE_REMOVAL_TYPE	1	R/W& R	[16]	9h	
Reserved		16		[15:0]	0h	

on on on one of the on



# LPDDR3 SDRA For customer



#### **Functional Description**

LPDDR3-SDRAM is a high-speed synchronous DRAM device internally configured as an 8-bank memory.

These devices contain the following number of bits: 4 Gb has 4,294,967,296 bits 8 Gb has 8,589,934,592 bits 16 Gb has 17,179,869,184 bits 32 Gb has 34,359,738,368 bits

LPDDR3 devices use a double data rate architecture on the Command/Address (CA) bus to reduce the number of input pins in the system. The 10-bit CA bus contains command, address, and bank information. Each command uses one clock cycle, during which command information is transferred on both the positive and negative edge of the clock.

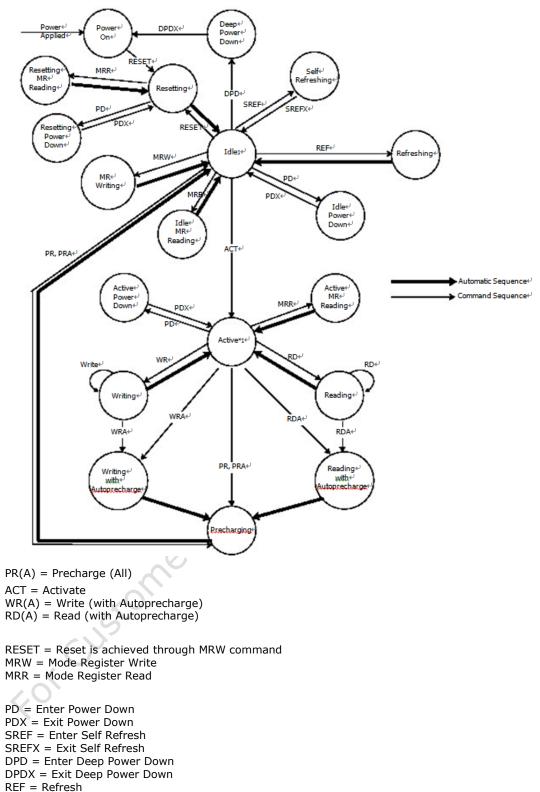
These devices also use a double data rate architecture on the DQ pins to achieve high speed operation. The double data rate architecture is essentially an 8n prefetch architecture with an interface designed to transfer two data bits per DQ every clock cycle at the I/O pins. A single read or write access for the LPDDR3 SDRAM effectively consists of a single 8n-bit wide, one clock cycle data transfer at the internal DRAM core and eight corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O pins. Read and write accesses to the LPDDR3 SDRAMs are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an Activate command, which is then followed by a Read or Write command. The address and BA bits registered coincident with the Activate command are used to select the row and the bank to be accessed. The address bits registered coincident with the Read or Write command are used to select the bank and the starting column location for the burst access.

Prior to normal operation, the LPDDR3 SDRAM must be initialized. The following section provides detailed information covering device initialization, register definition, command description and device operation.

Den	sity	4Gb	8Gb	16Gb	
Number	of Banks	8	8	8	
Banks A	ddresses	BA0 - BA2	BA0 - BA2	BA0 - BA2	
tREFI(us)		3.9	3.9	3.9	
X16	Row Addresses	R0 – R13	R0 – R14	R0 – R14	
×10	Column Addresses	C0 - C10	C0 - C10	C0 - C11	
X32	Row Addresses	R0 – R13	R0 – R14	R0 – R14	
^32	Column Addresses	C0 – C9	C0 – C9	C0 - C10	

# LPDDR3 SDRAM Addressing

Note:


1. The least-significant column address C0, C1 is not transmitted on the CA bus, and is implied to be zero.

2. tREFI values for all bank refresh is Tc =  $-30 \sim 85 \text{ °C}$ , Tc means Operating Case Temperature.

3. Row and Column Address values on the CA bus which are not used are "don't care".



#### **STATE DIAGRAM**





Note:

1. In the Idle state, all banks are precharged.

2. In the case of MRW to enter CA Training mode or Write Leveling Mode, the state machine will not automatically return to the Idle

state. In these cases an additional MRW command is required to exit either operating mode and return to the Idle state. See sections

"CA Training" or "Write Leveling".

3. Terminated bursts are not allowed. For these state transitions, the burst operation must be completed before the transition can occur.

4. Use caution with this diagram. It is intended to provide a floorplan of the possible state transitions and commands to control them, not all details. In particular, situations involving more than one bank are not captured in full detail.

For customer on the one of the on

www.longsys.com



#### Power-up, Initialization and Power-off

#### **Voltage Ramp and Device Initialization**

The following sequence must be used to power up the device. Unless specified otherwise, this procedure is mandatory.

#### 1. Voltage Ramp

While applying power (after Ta), CKE must be held LOW ( $\leq 0.2 \times$  VDDCA), and all other inputs must be between VILmin and VIHmax. The device outputs remain at High-Z while CKE is held LOW. Following the completion of the voltage ramp (Tb), CKE must be maintained LOW. DQ, DM, DQS_t and DQS_c voltage levels must be between VSSQ and VDDQ during voltage ramp to avoid latchup. CK_t, CK_c, CS_n, and CA input levels must be between VSSCA and VDDCA during voltage ramp to avoid latch-up. Voltage ramp power supply requirements are provided in the table "Voltage Ramp Conditions".

	Table. Voltage Ramp Conditions						
After	Applicable Conditions						
	VDD1 must be greater than VDD2-200mV.						
Ta is reached	VDD1 and VDD2 must be greater than VDDCA-200mV.						
	VDD1 and VDD2 must be greater than VDDQ-200mV.						
	VREF must always be less than all other supply voltages.						

Note:

1. Ta is the point when any power supply first reaches 300mV.

2. Noted conditions apply between Ta and power-off (controlled or uncontrolled).

Tb is the point at which all supply and reference voltages are within their defined operating ranges.
 Power ramp duration tINITO (Tb - Ta) must not exceed 20ms.

5. The voltage difference between any of VSS, VSSQ, and VSSCA pins must not exceed 100mV.

Beginning at Tb, CKE must remain LOW for at least tINIT1, after which CKE can be asserted HIGH. The clock must be stable at least tINIT2 prior to the first CKE LOW-to-HIGH transition (Tc). CKE, CS_n, and CA inputs must observe setup and hold requirements (tIS, tIH) with respect to the first rising clock edge (as well as to subsequent falling and rising edges).

If any MRR commands are issued, the clock period must be within the range defined for tCKb. MRW commands can be issued at normal clock frequencies as long as all AC timings are met. Some AC parameters (for example, tDQSCK) could have relaxed timings (such as tDQSCKb) before the system is appropriately configured. While keeping CKE HIGH, NOP commands must be issued for at least tINIT3 (Td). The ODT input signal may be in undefined state until tIS before CKE is registered HIGH. When CKE is registered HIGH, the ODT input signal shall be statically held at either LOW or HIGH. The ODT input signal remains static until the power up initialization sequence is finished, including the expiration of tZQINIT.

#### 2. Reset Command

After tINIT3 is satisfied, the MRW RESET command must be issued (Td).

An optional PRECHARGE ALL command can be issued prior to the MRW RESET command. Wait at least tINIT4 while keeping CKE asserted and issuing NOP commands. Only NOP commands are allowed during time tINIT4.



#### 3. MRRs and Device Auto Initialization (DAI) Polling

After tINIT4 is satisfied (Te), only MRR commands and power-down entry/exit commands are supported. After Te, CKE can go LOW in alignment with power-down entry and exit specifications. MRR commands are only valid at this time if the CA bus does not need to be trained. CA Training may only begin after time Tf. Use the MRR command to poll the DAI bit and report when device auto initialization is complete; otherwise, the controller must wait a minimum of tINIT5, or until the DAI bit is set before proceeding. As the memory output buffers are not properly configured by Te, some AC parameters must have relaxed timings before the system is appropriately configured.

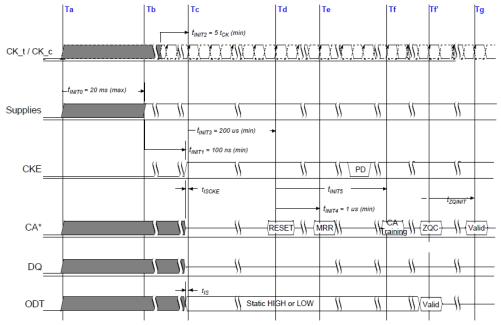
After the DAI bit (MR0, DAI) is set to zero by the memory device (DAI complete), the device is in the idle state (Tf).DAI status can be determined by issuing the MRR command to MR0. The device sets the DAI bit no later than tINIT5 after the RESET command. The controller must wait at least tINIT5 or until the DAI bit is set before proceeding.

#### 4. ZQ Calibration

If CA Training is not required, the MRW initialization calibration (ZQ_CAL) command can be issued to the memory (MR10) after time Tf. If CA Training is required, the CA Training may begin at time Tf. See the section of "Mode Register Write - CA Training Mode" for the CA Training command. No other CA commands (other than RESET or NOP) may be issued prior to the completion of CA Training. At the completion of CA Training (Tf'), the MRW initialization calibration (ZQ_CAL) command can be issued to the memory (MR10).

This command is used to calibrate output impedance over process, voltage, and temperature. In systems where more than one LPDDR3 device exists on the same bus, the controller must not overlap MRW ZQ_CAL commands. The device is ready for normal operation after tZQINIT.

#### 5. Normal Operation


After tZQINIT (Tg), MRW commands must be used to properly configure the memory (for example the output buffer drive strength, latencies, etc.). Specifically, MR1, MR2, and MR3 must be set to configure the memory for the target frequency and memory configuration.

After the initialization sequence is complete, the device is ready for any valid command. After Tg, the clock frequency can be changed using the procedure described in the LPDDR3 specification.

Symbol	Parameter	Valu	ue	Unit
Symbol	Falameter	min	max	Onic
tINITO	Maximum Voltage Ramp Time		20	Ms
tINIT1	Minimum CKE low time after completion of voltage ramp	100		Ns
tINIT2	Minimum stable clock before first CKE high	5		tCK
tINIT3	Minimum idle time after first CKE assertion	200		us
tINIT4	Minimum idle time after Reset command	1		us
tINIT5	Maximum duration of Device Auto-Initialization		10	us
tZQINIT	ZQ Initial Calibration for LPDDR3 devices	1		us
tCKb	Clock cycle time during boot	18	100	us

#### Table. Timing Parameters for initialization





* Midlevel on CA bus means: valid NOP

#### Figure. Power Ramp and Initialization Sequence

Notes

1. High-Z on the CA bus indicates NOP.

2. For tINIT values, see the table "Timing Parameters for Initialization".

3. After RESET command (time Te), RTT is disabled until ODT function is enabled by MRW to MR11 following Tg.

4. CA Training is optional.

#### Initialization After Reset (without Power ramp)

If the RESET command is issued before or after the power-up initialization sequence, the re-initialization procedure must begin at Td.

www.longsys.com



#### **Power-off Sequence**

The following procedure is required to power off the device.

While powering off, CKE must be held LOW ( $\leq 0.2 \times$  VDDCA); all other inputs must be between VILmin and VIHmax.The device outputs remain at High-Z while CKE is held LOW.

DQ, DM, DQS_t, and DQS_c voltage levels must be between VSSQ and VDDQ during the power-off sequence to avoid latch-up. CK_t, CK_c, CS_n, and CA input levels must be between VSSCA and VDDCA during the power-off sequence to avoid latch-up.

Tx is the point where any power supply drops below the minimum value specified.

Tz is the point where all power supplies are below 300mV. After Tz, the device is powered off (see the table "Power Supply Conditions").

#### **Table. Power Supply Conditions**

Between	Applicable Conditions				
	VDD1 must be greater than VDD2—200mV				
Tx and Tz	VDD1 must be greater than VDDCA—200mV				
	VDD1 must be greater than VDDQ—200mV				
	VREF must always be less than all other supply voltages				

The voltage difference between any of VSS, VSSQ, and VSSCA pins must not exceed 100mV.

#### Uncontrolled Power-Off Sequence

When an uncontrolled power-off occurs, the following conditions must be met:

At Tx, when the power supply drops below the minimum values specified, all power supplies must be turned off and all power-supply current capacity must be at zero, except for any static charge remaining in the system.

After Tz (the point at which all power supplies first reach 300mV), the device must power off. The time between Tx and Tz must not exceed 10ms. During this period, the relative voltage between power supplies is uncontrolled. VDD1 and VDD2 must decrease with a slope lower than 0.5 V/ $\mu$ s between Tx and Tz.

An uncontrolled power-off sequence can occur a maximum of 400 times over the life of the device.

# Symbol Parameter Value Unit tPOFF Maximum power-off ramp time 2 sec

#### Table. Power-Off Timing

or custor



#### Absolute Maximum DC Ratings

Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and func- tional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Parameter	Symbol	Min	Max	Unit	Notes
VDD1 supply voltage relative to VSS	VDD1	-0.4	2.3	V	1
VDD2 supply voltage relative to VS	VDD2	-0.4	1.6	V	1
VDDCA supply voltage relative to VSSCA	VDDCA	-0.4	1.6	V	1,2
VDDQ supply voltage relative to VSSQ	VDDQ	-0.4	1.6	V	1,3
Voltage on Any Pin relative to VSS	VIN,VOUT	-0.4	1.6	V	X
Storage Temperature	TSTG	-55	125	°C	4

Note:

1.See the section "Power-up, Initialization, and Power-off" for relationships between power supplies.

300mV.

 
 2. VREFCA
 0.6 x VDDCA; however, VREFCA may be
 VDDCA provided that VREFCA

 3. VREFDQ
 0.7 x VDDQ; however, VREFDQ may be
 VDDQ provided that VREFDQ
 300mV.

e of the second 4. Storage Temperature is the case surface temperature on the center/top side of the device. For the measurement conditions, please refer to JESD51-2 standard.



#### AC and DC Operating Conditions

Operation or timing that is not specified is illegal, and after such an event, in order to guarantee proper operation, the LPDDR3 Device must be powered down and then restarted through the specialized initialization sequence before normal operation can continue.

#### Recommended DC Operating Conditions

Parameter	Symbol	Min	Тур	Unit
Core power 1	VDD1	1.70	1.80	V
Core power 2	VDD2	1.14	1.20	V
Input Buffer Power	VDDCA	1.14	1.20	V
I/O Buffer Power	VDDQ	1.14	1.20	V

Note :

1. VDD1 uses significantly less current than VDD2.

2. The voltage range is for DC voltage only. DC is defined as the voltage supplied at the DRAM and is inclusive of all noise up to 1MHz at the DRAM package ball.

#### **Input Leakage Current**

Parameter	Symbol	Min	Max	Unit	Note		
Input Leakage current	IL	-2	2	uA	2		
VREF supply leakage current	IVREF	-1	CD'	uA	1		

Note:

1. For CA, CKE, CS_n, CK_t, CK_c. Any input 0V VIN VDDCA(All other pins not under test = 0V)

Although DM is for input only, the DM leakage shall match the DQ and DQS_t/DQS_c output leakage specification.
 The minimum limit requirement is for testing purposes. The leakage current on VREFCA and VREFDQ pins should be minimal.

4. VREFDQ = VDDQ/2 or VREFCA = VDDCA/2. (All other pins not under test = 0V)

#### **Operating Temperature**

Param	leter	Symbol	Min	Max	Unit	Note
Operating	Standard	т	-30	85	00	1
Temperature	Extended	T _{OPER}	-30	105	-C	1

Note:

1. Operating Temperature is the case surface temperature on the center-top side of the LPDDR3 device. For the measurement conditions, please refer to JESD51-2 standard.

2. Some applications require operation of LPDDR3 in the maximum temperature conditons in the Extended Temperature Range between -30°C and 105°C case temperature. For LPDDR3 devices, derating may be neccessary to operate in this range. See MR4 on the section "Mode Register".

3. Either the device case temperature rating or the temperature sensor (See the section of "Temperature Sensor") may be used to set an appropriate refresh rate, determine the need for AC timing de-rating and/or monitor the operating temperature. When using the temperature sensor, the actual device case temperature may be higher than the TOPER rating that applies for the Standard or Elevated Temperature Ranges. For example, TCASE may be above 85°C when the temperature sensor indicates a temperature of less than 85°C.



#### AC and DC Logic Input Levels for Differential Signals



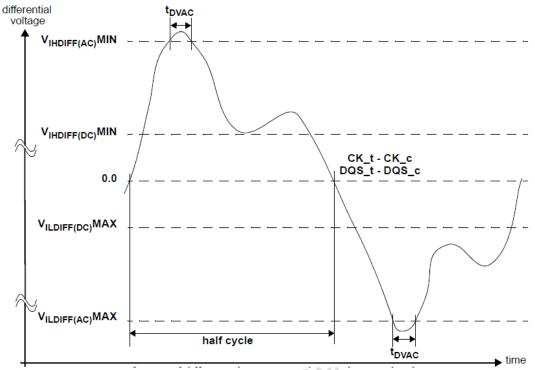



Figure. Definition of differential ac-swing and Time above ac-level tDVAC



#### Single-ended Requirements for Differential Signals

Each individual component of a differential signal (CK_t, DQS_t, CK_c, or DQS_c) has also to comply with certain requirements for single-ended signals.

CK_t and CK_c shall meet VSEH(AC)min / VSEL(AC)max in every half-cycle.

DQS_t, DQS_c shall meet VSEH(AC)min / VSEL(AC)max in every half-cycle proceeding and following a valid transition.

Note that the applicable ac-levels for CA and DQ's are different per speed-bin.

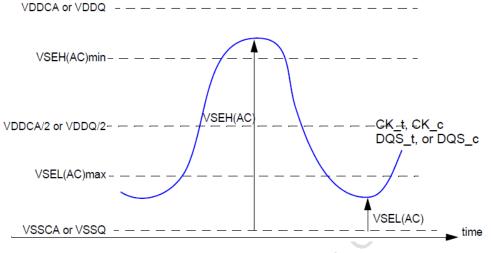



Figure. Single-ended requirement for differential signals

Note that while CA and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement with respect to VDDQ/2 for DQS_t, DQS_C and VDDCA/2 for CK_t, CK_c; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach VSEL(AC)max, VSEH(AC)min has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.



#### **Differential Input Cross Point Voltage**

To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK_t, CK_c and DQS_t, DQS_c) must meet the requirements in "Single-end-ed Levels for Clock and Strobe". The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS.

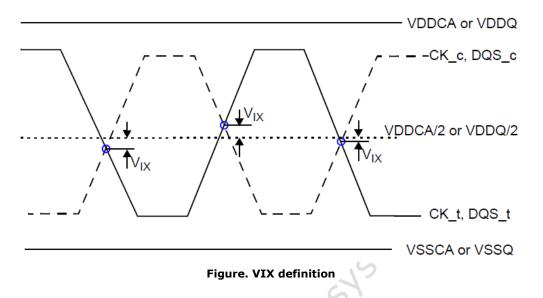



Table. Cross Point Voltage for Differential Input Signals (Clock and Strobe)

Parameter	Symbol	Min	Max	Unit	Note
Differential Input Point Voltage relative to VDDCA/2 for CK_t and CK_c	VIXCA	-120	120	mV	1,2
Differential Input Point Voltage relative to VDDCA/2 for DOS_t and DOS_c	VIXDQ	-120	120	mV	1,2

Note:

1. The typical value of VIX(AC) is expected to be about 0.5 x VDD of the transmitting device, and VIX(AC) is expected to track variations in VDD. VIX(AC) indicates the voltage at which differential input signals must cross. 2. For CK_t and CK_c, VREF = VREFCA(DC). For DQS_t and DQS_c, VREF = VREFDQ(DC).

For custome



#### Slew Rate Definitions for Single-ended Input Signals

See "CA and CS_n Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals. See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.

#### Slew Rate Definitions for Differential Input Signals

Input slew rate for differential signals (CK_t, CK_c and DQS_t, DQS_c) are defined and measured as shown in the table and figure below.

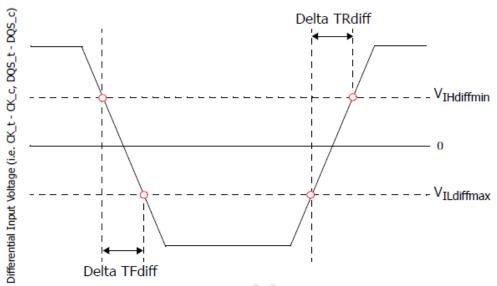



Figure. Differential Input Slew Rate Definition for CK_t, CK_c and DQS_t, DQS_c



#### Single Ended Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in below Table and Figure.

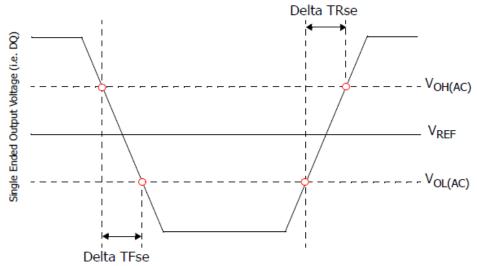



Figure. Single Ended Output Slew Rate Definition

Table.	<b>Output Sle</b>	ew Rate (S	ingle Ended)

Parameter	Symbol	Min	Max	Unit	Note
Single-ended Output Slew Rate (RON = $40 \Omega + / -30\%$ )	SRQse	1.5	4.0	V/ns	
Output slew-rate matching Ratio (Pull-up to Pull-down)	, C	0.7	1.4		

Description:

SR: Slew Rate

Q: Query Output (like in DQ, which stands for Data-in, Query-Output)

se: Single-ended Signals

Note:

1. Measured with output reference load.

2. The ratio of pull-up to pull-down slew rate is specified for the same temperature and voltage, over the entire temperature and volt-

age range. For a given output, it represents the maximum difference between pull-up and pull-down drivers due to process variation.

3. The output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC).

4. Slew rates are measured under average SSO conditions, with 50% of DQ signals per data byte switching.



#### **Differential Output Slew Rate**

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in below Table and Figure.

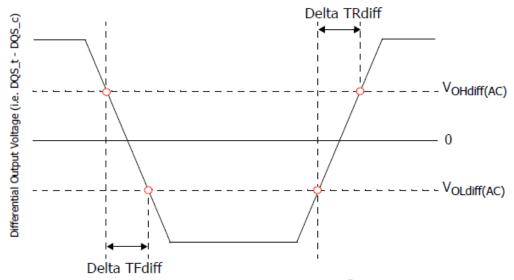



Figure. Differential Output Slew Rate Definition

Table. Output Slew Rate (Differential)

Parameter	Symbol	Min	Max	Unit	Note
Single-ended Output Slew Rate (RON = $40\Omega + / -30\%$ )	SRQdiff	3.0	8.0	V/ns	
Description					

Description:

SR: Slew Rate

Q: Query Output (like in DQ, which stands for Data-in, Query-Output)

diff: Differential Signals

#### Note:

1. Measured with output reference load.

or cust

2. The output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC).

3. Slew rates are measured under average SSO conditions, with 50% of DQ signals per data byte switching.



Overshoot and Undershoot Specifications						
Parameter		1600	1333	Unit		
Maximum peak amplitude allowed for overshoot area	0.35			V		
Maximum peak amplitude allowed for undershoot area	0.35			V		
Maximum overshoot area above VDD	0.09 0.10 0.12			V-ns		
Maximum undershoot area below VSS	0.09	0.10	0.12	V-ns		

. -

. ...

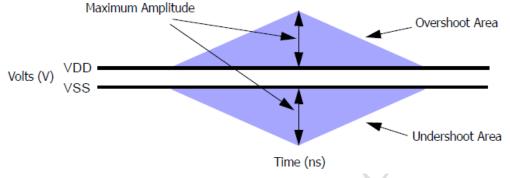
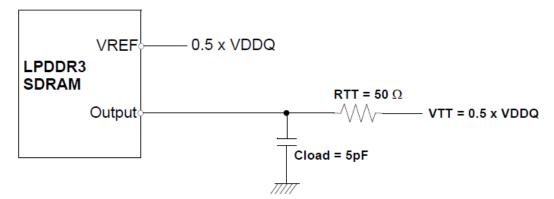



Figure. Overshoot and Undershoot Definition

Note:

1. VDD stands for VDDCA for CA0-9, CK_t, CK_c, CS_n, and CKE. VDD stands for VDDQ for DQ, DM, ODT, DQS_t, and DQS_c.

2. VSS stands for VSSCA for CA0-9, CK_t, CK_c, CS_n, and CKE. VSS stands for VSSQ for DQ, DM, ODT, DQS_t, and DQS_c.


- 3. Absolute maximum requirements apply.
- 4. Maximum peak amplitude values are referenced from actual VDD and VSS values.
- 5. Maximum area values are referenced from maximum operating VDD and VSS values.



#### **Output Buffer Characteristics**

#### HSUL_12 Driver Output Timing Reference Load

These 'Timing Reference Loads' are not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.



Note:

1. All output timing parameter values (like tDQSCK, tDQSQ, tQHS, tHZ, tRPRE etc.) are reported with respect to this reference load.

This reference load is also used to report slew rate.

#### Figure. HSUL_12 Driver Output Reference Load for Timing and Slew Rate

#### RON_{PU} and RON_{PD} resistor Definition

$$RONPU = \frac{(VDDQ - Vout)}{ABS(Iout)}$$

Note 1: This is under the condition that RONPD is turned off

$$RONPD = \frac{Vout}{ABS(Iout)}$$

Note 1: This is under the condition that RONPU is turned off

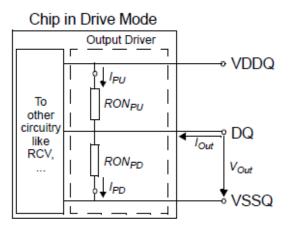
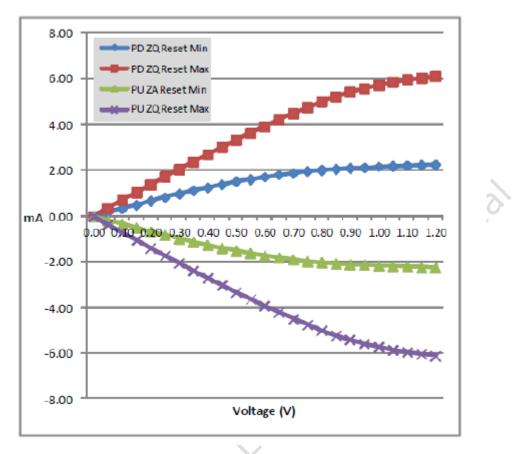


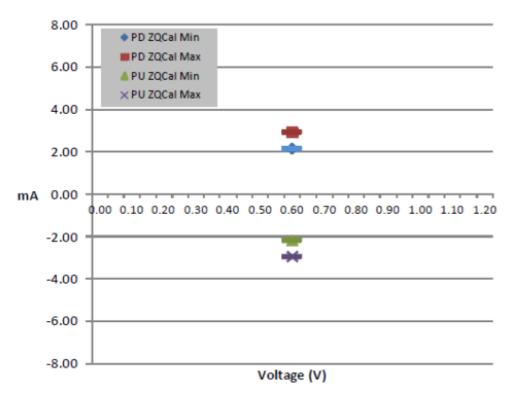

Figure. Output Driver: Definition of Voltages and Currents  $RON_{PU}$  and  $RON_{PD}$  Characteristics with ZQ Calibration



Output driver impedance RON is defined by the value of the external reference resistor RZQ. Nominal RZQ is 240  $\ensuremath{\Omega}$  .


$$MMPUPD = \frac{RONPU - RONPD}{RONNOM} \times 100$$

For example, with MMPUPD(max) = 15% and RONPD = 0.85, RONPU must be less than 1.0. 6. Output driver strength measured without ODT.

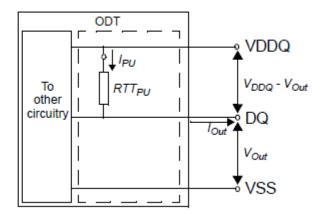

For customer on MI Longsys confidential



**RZQ I-V Curve** 












#### **ODT Levels and I-V Characteristics**

On-Die Termination effective resistance, RTT, is defined by mode register MR11[1:0]. ODT is applied to the DQ, DM, and DQS_t/DQS_c pins. A functional representation of the on-die termination is shown in the figure below. RTT is defined by the following formula: RTTPU = (VDDQ - VOut) / | IOut |



#### Table. ODT DC Electrical Characteristics, assuming RZQ = 240 ohm after proper ZQ calibration

DTT(ahm)		IO	UT
RTT(ohm)	VOUT(V)	Min(mA)	Max(mA)
RZQ/1	0.6	-2.17	-2.94
RZQ/2	0.6	-4.34	-5.88
RZQ/4	0.6	-8.68	-11.76

For



#### CA and CS_n Setup, Hold and Derating

For all input signals (CA and CS_n) the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value to the tIS and tIH derating value respectively. Example: tIS (total setup time) = tIS(base) +  $\triangle$ tIS

Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIH(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max. If the actual signal is always earlier than the nominal slew rate line between shaded `VREF(DC) to ac region', use nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere between shaded `VREF(DC) to ac region', the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value.

Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC). Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If the actual signal is always later than the nominal slew rate line between shaded `DC to VREF(DC) region', use nominal slew rate for derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded `DC to VREF(DC) region', the slew rate of a tangent line to the actual signal from the dc level to VREF(DC) level is used for derating value.

For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC. Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).

For slew rates in between the values listed in Table, the derating values may obtained by linear interpolation. These values are typically not subject to production test. They are verified by design and characterization.

Unit[ps]	LPDDR3 1866	LPDDR3 1600	LPDDR3 1333	Reference
tIS(base)		75	100	VIH/L(AC)=VREF(DC)+/-150mV
tIS(base)	62.5			VIH/L(AC)=VREF(DC)+/-135mV
tIH(base)	80	100	125	VIH/L(AC)=VREF(DC)+/-100mV
· · ·	80			

#### Table. CA Setup and Hold Base-Values

Note 1: AC/DC referenced for 2V/ns CA slew rate and 4V/ns differential CK_t/CK_c slew rate.

#### Table. CS_n Setup and Hold Base-Values

Unit[ps]	LPDDR3 1866	LPDDR3 1600	LPDDR3 1333	Reference
tIS(base)	0	195	215	VIH/L(AC)=VREF(DC)+/-150mV
tIS(base)	162.5			VIH/L(AC)=VREF(DC)+/-135mV
tIH(base)	180	220	240	VIH/L(AC)=VREF(DC)+/-100mV

Note 1: AC/DC referenced for 2V/ns CS_n slew rate and 4V/ns differential CK_t/CK_c slew rate.



# Rev A0 NCEPNA6M4-xxxx

AC TIMING PARAMETERS	(1/5)	-		
Parameter	Symbol	min max	LPDDR3 1333	Unit
Maximum clock Frequency			667	MHz
	tCK(avg)	min	1.5	ns
Average Clock Period		max	100	
	tCH(avg)	min	0.45	tCK(avg)
Average high pulse width		max	0.55	
	tCL(avg)	min	0.45	
Average low pulse width		max	0.55	tCK(avg)
Absolute Clock Period	tCK(abs)	min	tCK(avg)min + tJIT(per)min	ns
Absolute clock HIGH pulse width	tCH(abs),	min	0.43	
(with allowed jitter)	allowed	max	0.57	tCK(avg)
Absolute clock LOW pulse width	tCL(abs),	min	0.43	
Absolute clock LOW pulse width (with allowed jitter)	allowed	max	0.57	tCK(avg)
	tJIT(per),	min	-80	
Clock Period Jitter (with allowed jitter)	allowed	max	80	ps
Maximum Clock Jitter between two consecutive clock cycles (with allowed jitter)	tJIT(cc), allowed	max	160	ps
Duty cycle Jitter (with allowed jitter)	tJIT(duty), allowed	min	min((tCH(abs)min - tCH(avg)min), (tCL(abs)min - tCL(avg)min)) * tCK(avg)	
	anowed	max	max((tCH(abs)max - tCH(avg)max), (tCH(abs)max - tCL(avg)max)) * tCK(avg)	
Cumulative error across 2 cycles	tERR(2per),	min	-118	– ps
	allowed	max	118	
Cumulative error across 3 cycles	tERR(3per),	min	-140	– ps
	allowed	max	140	
Cumulative error across 4 cycles	tERR(4per),	min	-155	ps
	allowed	max	155	
Cumulative error across 5 cycles	tERR(5per),	min	-168	- ps
Cumulative error across 5 cycles	allowed	max	168	
Cumulative error across 6 cycles	tERR(6per),	min	-177	– ps
Cumulative error across o cycles	allowed	max	177	
Cumulative error across 7 evelos	tERR(7per), allowed	min	-186	- ps
Cumulative error across 7 cycles		max	186	
Cumulative error across 9 evelos	tERR(8per), allowed	min	-193	– ps
Cumulative error across 8 cycles		max	193	
Cumulative error across 9 cycles	tERR(9per) allowed	min	-200	– ps
		max	200	
	tERR(10per)	min	-205	ps
Cumulative error across 10 cycles	allowed	max	205	

Longsys Electronics



# AC TIMING PARAMETERS (2/5)

Parameter	Symbol	min max	LPDDR3 1333	Unit
	Clock Timing	(continued)		
	tERR(11per),	min	-210	ps
Cumulative error across 11 cycles	allowed	max	210	
	tERR(12per),	min	-215	
Cumulative error across 12 cycles	allowed	max	215	ps
			tERR(nper), allowed min = (1)	
		min	+ 0.68ln(n)) *	
Cumulative error across n cycles	tERR(nper),		tJIT(per),allowed min	
(n = 13, 14 ,,20)	allowed		tERR(nper), allowed max = (1)	ps
		max	+ 0.68ln(n)) *	
			tJIT(per),allowed max	
	ZQ Calibration	Parameters	<u> </u>	
Initialization Calibration Time	tZQINIT	min	l	us
Long Calibration Time	tZQCL	min	360	ns
Short Calibration Time	tZQCS	min	90	ns
Calibration Reset Time	tZQRESET	min	max(50ns, 3nCK)	ns
	Read Para	ameters		
	tDQSCK	min	2.5	ns
DQS output access time from CK/CK#		max	2.5	
DQSCK Delta short	tDQSCKDS	max	265	ps
DQSCK Delta Medium	tDQSCKDM	max	593	ps
DQSCK Delta Long	tDQSCKDL	max	733	ps
DQS-DQ skew	tDQSQ	max	165	ps
DQS Output High Pulse Width	tQSH	min	tCH(abs) - 0.05	tCK(avg)
DQS Output Low Pulse Width	tQSL	min	tCL(abs) - 0.05	tCK(avg)
DQ/DQS output hold time from DQS	tQH	min	MIN (tQSH, tQSL)	ps
Read preamble	tRPRE	min	0.9	tCK(avg)
Read postamble	tRPST	min	0.3	tCK(avg)
DQS low-Z from clock	tLZ(DQS)	min	tDQSCK(min) - 300	ps
DQ low-Z from clock	tLZ(DQ)	min	tDQSCK(min) - 300	ps
DQS high-Z from clock	tHZ(DQS)	max	tDQSCK(max) - 100	ps
DQ high-Z from clock	tHZ(DQ)	max	tDQSCK(max) + (1.4 x tDQSQmax)	ps



## AC TIMING PARAMETERS (3/5)

AC TIMING PARAMETERS ( Parameter	Symbol	min max	LPDDR3 1333	Unit
	Write Par		1355	
DQ and DM input setup time (Vref based)	tDS	min	175	ps
DQ and DM input hold time (Vref based)	tDH	min	175	ps
DQ and DM input pulse width	tDIPW	min	0.35	tCK(avg)
Write command to 1st DQS latching		min	0.75	tCK(avg)
transition	tDQSS	max	1.25	
DQS input high-level width	tDQSH	min	0.4	tCK(avg)
DQS input low-level width	tDQSL	min	0.4	tCK(avg)
DQS falling edge to CK setup time	tDSS	min	0.2	tCK(avg)
DQS falling edge hold time from CK	tDSH	min	0.2	tCK(avg)
Write postamble	tWPST	min	0.4	tCK(avg)
Write preamble	tWPRE	min	0.8	tCK(avg)
·	CKE Input F	Parameters		( 2)
CKE min. pulse width (high/low pulse width)	tCKE	min	max(7.5ns, 3nCK)	ns
CKE input setup time	tISCKE	min	0.25	tCK(avg)
CKE input hold time	tIHCKE	min	0.25	tCK(avg)
Command path disable delay	tCPDED	min	2	tCK(avg)
Cor	nmand Address	Input Paran	neters	
Address and control input setup time	tISCA	min	175	ps
Address and control input hold time	tIHCA	min	175	ps
CS_n input setup time	tISCS	min	290	tCK(avg)
CS_n input hold time	tIHCS	min	290	tCK(avg)
Address and control input pulse width	tIPWCA	min	0.35	tCK(avg)
CS_n input pulse width	tIPWCS	min	0.7	tCK(avg)
B	oot Parameters	(10MHz-55N	1Hz)	1
		min	18	
Clock Cycle Time	tCKb	max	100	ns
CKE Input Setup Time	tISCKEb	min	2.5	ns
CKE Input Hold Time	tIHCKEb	min	2.5	ns
Address & Control Input Setup Time	tISb	min	1150	ps
Address & Control Input Hold Time	tIHb	min	1150	ps
	tDQSCKb	min	2.0	– ns
DQS Output Data Access Time from CK/CK#		max	10.0	
Data Strobe Edge to Output Data Edge tDQSQb	tDQSQb	min	1.2	ns
	Mode Registe	r Parameters		
MODE REGISTER Write command period	tMRW	min	10	tCK(avg)
MODE REGISTER Read command period	tMRR	min	4	tCK(avg)
Additional time after tXP has expired until MRR command may be issued	tMRRI	min	tRCD(MIN)	ns



# AC TIMING PARAMETERS (4/5)

Parameter	Symbol	min max	LPDDR3 1333	Unit
	Core Para			
Read Latency	RL	min	10	tCK(avg)
Write Latency (Set A)	WL	min	6	tCK(avg)
Write Latency (Set B)	WL	min	8	tCK(avg)
ACTIVE to ACTIVE command period	tRC	min	tRAS+tRPab (with all-bank Precharge) tRAS+tRPpb (with per-bank Precharge)	ns
CKE min. pulse width during Self-Refresh (low pulse width during Self-Refresh)	tCKESR	min	max(15ns, 3nCK)	ns
Self refresh exit to next valid command delay	tXSR	min	max(tRFCab +10ns, 2nCK)	ns
Exit power down to next valid command delay	tXP	min	max(7.5ns, 3nCK)	ns
CAS to CAS delay	tCCD	min	4	tCK(avg)
Internal Read to Precharge command delay	tRTP	min	max(7.5ns, 4nCK)	ns
RAS to CAS Delay	tRCD	min	max(18ns, 3nCK)	ns
Row Precharge Time (single bank)	tRPpb	min	max(18ns ,3nCK)	ns
Row Precharge Time (all banks) - 8-bank	tRPab	min	max(21ns, 3nCK)	ns
Row Active Time	tRAS	min max	max(42ns, 3nCK) 70,000	ns
Write Recovery Time	tWR	min	max(15ns, 4nCK)	ns
Internal Write to Read Command Delay	tWTR	min	max(7.5ns, 4nCK)	ns
Active bank A to Active bank B	tRRD	min	max(10ns, 2nCK)	ns
Four Bank Activate Window	tFAW	min	max(50ns, 8nCK)	ns
Minimum Deep Power Down Time	tDPD	min	500	us
	ODT Para	ameters		
Asynchronous RTT turn-on dely from ODT		min	1.75	ns
input	tODTon	max	3.5	
Asynchronous RTT turn-off delay from ODT		min	1.75	ns
input	tODToff	max	3.5	
Automatic RTT turn-on delay after READ data	tAODTon	max	tDQSCKmax + 1.4 * tDQSQmax + tCK(avg,min)	ps
Automatic RTT turn-off delay after READ data	tAODToff	min	tDQSCKmin - 300	ps
RTT disable delay from power down, self-refresh and deep power down entry	tODTd	min	12	ns
RTT enable delay from power down and self refresh exit	tODTe	max	12	ns



## AC TIMING PARAMETERS (5/5)

Parameter	Symbol	min max	LPDDR3 1333	Unit
	CA Training	p Parameters		
First CA calibratino command after CA calibration mode is programmed	tCAMRD	min	20	tCK(avg)
First CA calibratino command after CKE is LOW	tCAENT	min	10	tCK(avg)
CA calibration exit command after CKE is HIGH	tCAEXT	min	10	tCK(avg)
CKE LOW after CA calibration mode is programmed	tCACKEL	min	10	tCK(avg)
CKE HIGH after the last CA calibration results are driven	tCACKEH	min	10	tCK(avg)
Data out delay after CA training calibration command is programmed	tADR	max	20	ns
MRW CA exit command to DQ tri-state	tMRZ	min	3	ns
CA calibration command to CA calibration command delay	tCACD	min	RU(tADR+2*tCK)	tCK(avg)
	Write Leveli	ng Paramete	rs	
DQS_t/DQS_c delay after write leveling mode is programmed	tWLDQSEN	min max	- 25	ns
First DQS_t/DQS_c edge after write		min	40	
leveling mode is programmed	tWLMRD	max	-	ns
	tWLO	min	0	
Write leveling output delay		max	20	ns
Write leveling hold time	tWLH	min	205	ps
Write leveling setup time	tWLS	min	205	ps
Made register set command delay	tMRD	min	Max(14ns, 10nCK)	ns
Mode register set command delay		max		
5	Temperatu	re De-Rating	J	
tDQSCK De-Rating	tDQSCK (Derated)	max	5620	
4 OK	tRCD(Derate d)	min	tRCD + 1.875	
	tRC(Derated )	min	tRC + 1.875	
Core Timings Temperature De-Rating	tRAS(Derate d)	min	tRAS + 1.875	
	tRP(Derated)	min	tRP + 1.875	
	tRRD(Derate d)	min	tRRD + 1.875	